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Analytic treatment of cooperativity effects in supercooled liquids
within the framework of the random-walk model
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An analytic treatment of cooperative effects in supercooled liquids within the framework of a
random-walk model is presented. Cooperatively rearranging regions are shown to expand as the temper-
ature T approaches a critical value T} identified as the Kauzmann temperature. The model allows cal-
culating susceptibility spectra and the T dependence of the average relaxation time. The results are in

good agreement with existing experimental data.
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Kinetic phenomena in supercooled liquids are known
to be highly cooperative [1-3]. Interaction between ran-
domly positioned particles creates a very complicated po-
tential landscape for atoms and/or molecules that
prevents a liquid from crystallization at the melting point
T,,. Owing to the large number of metastable states with
higher energies and sufficiently long lifetimes a system
cannot attain the state with minimum energy. Another
important consequence of strong interaction is the high
degree of cooperativity of particle motion. One particle
cannot change its position independently from its neigh-
bors, implying that motion of a single particle should be
considered together with corresponding changes in its
surroundings. These microscopic features are responsible
for a number of interesting and unusual properties of su-
percooled liquids [1,4] and render a first-principles
theoretical description of the problem extremely difficult.
The most elaborated current approach is the mode cou-
pling theory (MCT) [3,5-7] which takes into account the
interactions between real particles (atoms or molecules).
It considers nonharmonic oscillations of a single particle,
the effective friction force depending upon positions and
velocities of the surrounding particles. Coupled nonhar-
monic oscillations lead to density fluctuations that govern
the temperature dependence of the relaxation time in a
self-consistent way, yielding the scaling law
7x(T—T,)” 7 for the average relaxation time. The tem-
perature T, marks a dynamical singularity at which the
density fluctuations vanish. Within the framework of the
MCT this is equivalent to dynamic freezing of the system.
It was recognized, however, that the divergence tempera-
ture T, is not identical with the calorimetric glass transi-
tion temperature T, at which the system becomes noner-
godic. The MCT describes both the non-Arrhenius-type
temperature dependence of average relaxation times for
T,,<T<T, and the shape of susceptibility curves. It
should be emphasized, however, that owing to the in-
creasing degree of cooperativity computational
difficulties of the MCT also increase with decreasing tem-
perature and in its present form it fails to explain the
behavior of supercooled liquids at temperatures close to
T, [3]. Currently there is no analytic theory that is able
to explain experimental frequency-dependent susceptibili-
ty data within the temperature interval T, <T <T, in
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which the MCT is not directly applicable.

Phenomenological approaches usually assume that a
viscous liquid can be considered as an ensemble of so-
called “cooperatively rearranging regions” or ‘“‘structural
units” [8—15]. They rest upon temperature dependences
of different thermodynamic characteristics such as
volume, entropy, or energy. The two former groups of
models predict a Vogel-Fulcher-type temperature depen-
dence of the average relaxation time 7 [8,9],

) (1)

T=To€Xp TTTI_

implying the divergence of the relaxation time at the tem-
perature T,. The entropy-controlled models associate
this effect with a genuine second order phase transition to
a state of zero configurational entropy, thus identifying
T, with the Kauzmann temperature 7} [8]. In terms of
statistical mechanics, the dynamical motion of the
structural units and, concomitantly, the form of the tem-
perature dependence of 7 are connected with the topolo-
gy of the potential energy landscape in configurational
space [16,17].

In energy-controlled random-walk models (RWM’s)
structural units are considered to be atoms or molecules
in particular surroundings. Their dynamics is described
in terms of their random walk within a random potential
landscape that reflects the local environment of a given
particle [10-15]. These models are based on a master
equation that governs the kinetics of jumps of structural
units over potential barriers between metastable states
[13,15]. At higher temperatures the time scale of fluctua-
tions of the barrier heights separating local minima of the
potential landscape is shorter than a characteristic jump
time and structural units can execute jumps whenever
barriers between metastable states happen to be
sufficiently low. At lower temperatures a frozen-in distri-
bution of barrier heights is established that determines
the kinetics of structural units. This approach relates ex-
perimentally observed temperature dependences of relax-
ation times and frequencies to the energetic distribution
of the density of possible metastable states (DPMS) of
structural units determined by a large number of neigh-
bors with random configurational coordinates [15]. Since
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quadratic spectral moments of these contributions do not
necessarily exist, a stretched Gaussian function can be as-
sumed as a both reasonable and sufficiently general ansatz
for the DPMS distribution,

E
kT,

a

g(E)=gqexp , I<a< o, (2)

where T, and a are the parameters of the DPMS distri-
bution. For this distribution the RWM predicts a tem-
perature dependence of the relaxation time of the form

To a/(a—1)

aT

It has been shown before [15] that Eq. (3) provides a
reasonably good fit for temperature dependences of relax-
ation times in many supercooled liquids within a temper-
ature range extending from the melting point T,, to the
glass transition temperature Tg. In addition, the RWM
is able to predict—both analytically and by
simulations—the occurrence of a kinetic freezing effect
upon cooling and to recover the experimentally deter-
mined dependence of the glass transition temperature
upon the cooling rate [14,15]. On the other hand, none of
the existing phenomenological models is able to fit sus-
ceptibility spectra of supercooled melts. In particular,
the RWM, though correctly reproducing temperature
dependences of peak frequencies yields susceptibility
spectra that are too broad.

Another common disadvantage of the above mentioned
models is that they do not properly account for relatively
long-range cooperative effects occurring in supercooled
melts near T,. In particular, the RWM in its original
version does not consider interaction between different
structural units whereas within the framework of the
MCT this consideration is limited by highly complicated
mathematical problems that until now can be solved nei-
ther analytically nor numerically. The present work is an
attempt to incorporate cooperative effects into the frame-
work of the RWM. By considering long-range coopera-
tive effects the evolution of ordered regions within the
disordered medium whose size increases with decreasing
temperature is accounted for. At a certain critical tem-
perature, identified as the Kauzmann temperature, the
configurational entropy will be shown to vanish. Another
consequence of the existence of cooperatively ordered re-
gions is the narrowing of the distribution function for the
energies of structural units and, concomitantly, of experi-
mental susceptibility spectra. Evidence for the existence
J

T=TeeXp |C (3)
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of long-range cooperative regions stems from light
scattering experiments [18,19]. There are also indirect in-
dications such as the sensitivity of T, to the thickness of
amorphous layers [20] and the increase of viscosity in
thin layers [21].

In most disordered systems atoms or molecules in-
teract via dipole moments. This is the case for networks
of electric dipoles as well as electronic or nuclear spins.
The following consideration is for electric dipoles; how-
ever, the generalization to other types of dipole-dipole in-
teraction is straightforward. The potential energy u of
two interacting dipoles is

1 (p-p’) _ 3(p-r)p'r)
) (4)
47T£Eo r3 r5

where r is their distance, p and p’ are the dipole mo-
ments, €, is the dielectric permittivity, and & the dielec-
tric constant. In disordered systems the spatial distribu-
tion of dipoles is characterized by both random distances
and random orientations. Under these conditions the di-
pole contribution to the potential energy of a particle re-
sults from stochastic fluctuations [22]. However, dipole-
dipole interaction within an ordered cluster will give an
additional contribution to the potential energy. Consider
a particle surrounded by other particles interacting ac-
cording to a u «1/r3 law. Since the contribution dU
from dipoles within a spherical layer extending from r to
r+dr to the total potential energy U of the particle is

dU «<(1/r3)(4mr3dr)=<(1/N)dN ,

N being the number of dipoles within the sphere of radius
R, the dependence of U on the number of dipoles within
an ordered cluster is =InN. As long as cooperativity in-
creases upon cooling of a supercooled liquid one should
consider this coupling energy when writing the master
equation for the distribution function of the structural
units.

Within the temperature range T, <7 <7, temporal
fluctuations of the energy landscape in supercooled
liquids are small and over-barrier jumps of structural
units represent the dominating mode of structural rear-
rangements [15]. Since the structural unit encounters a
new environment after having executing a jump
“configurational memory” is likely to be lost after each
jump, implying that the energies of successively visited
metastable states are uncorrelated. Under these condi-
tions a master equation for the normalized energy distri-
bution function f(E,t) of the structural units
[de f(E,t)=1] can be formulated as

a = @ ’ 4 -
o LD vog(E)fo dE f(E,t)exp[

E+E,In[1+AEf(E,t)]

—vof (E, t)exp [— T

where g (E) is the normalized DPMS distribution func-
tion of structural units within a disordered environment
[ f dE g(E)=1], v, an attempt-to-jump frequency, and k

E'+E; In[1+AEf(E’,t)]
kT

.

|
the Boltzmann constant. The first term on the right-hand
side of Eq. (5) describes jumps into a given state from
all other states and the second term corresponds to
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jumps starting from the given state. The term
E, In[1+AEf(E,t)] describes the contribution to the ac-
tivation energy of structural-unit jumps arising from the
coupling among structural units. This term is written as-
suming that structural units with similar energies (within
the energy domain ~AE) occupy configurationally simi-
lar metastable states with a concomitant increase in cou-
pling energy within the ordered regions. The parameter
E, characterizes the strength of the dipole-dipole interac-
tion [see Eq. (4)].

At temperatures above the glass transition temperature
a supercooled melt is in quasi-equilibrium implying equi-
librium distribution of structural units over metastable
hopping states. This distribution is given by the equilibri-
um solution of Eq. (5),
[ 7dE

0

kT
1/[1—(Eg /kT))

Fegl E)=

1/[1—(Eg /kT)] y—1
g(E)exp I

X kT

g(E)exp (6)

Equation (6) represents an approximate solution of Eq. (5)
for an energy interval near the maximum of the distribu-
tion function where AEf.(E)>1. Note that most
structural units occupy states within this interval. Gen-
erally, a characteristic width of the distribution is deter-
mined by both the width of the DPMS function g (E) and
the temperature. The latter plays, nevertheless, a dom-
inant role when the ratio E, /kT approaches unity. In
particular, at T = Eg /k the function f.,(E) approaches a
8 function, f.(E)=8(E —E,,), with E,, being the ener-
gy at which the function g(E)exp(—E /E;) reaches its
maximum value. As long as there exists a correlation be-
tween positional and energetic characteristics of structur-
al units this means that at T=E, /k all structural units
have similar orientations and surroundings. Thus, Eq. (6)
predicts zero configurational entropy of a supercooled
liquid at a finite temperature. This state cannot, howev-
er, be realized experimentally since the coupling contri-
bution to the activation energy of structural-unit jumps
increases strongly as the distribution function becomes
narrower with a concomitant increase of its peak value
[see Eq. (5)]. Therefore an infinite time and/or an
infinitesimal cooling rate are necessary to approach the
state of zero configurational entropy. The above de-
scribed effect is well known as the Kauzmann paradox
[23]. Eg is thus directly related to the Kauzmann tem-
perature, Ex =kTy. On the other hand, the increase of
the coupling energy with decreasing temperature indi-
cates that both the number of particles that form an or-
dered region and the characteristic size of these regions
also increase at lower temperatures.

The characteristic relaxation time is the inverse fre-
quency of structural-unit jumps from the states corre-
sponding to the maximum of the equilibrium distribution

(v/vo)f g Edexp({E +ExIn[1+AEf  (E)]} /kT)
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FIG. 1. Temperature dependences of the relaxation time.
Solid curves are calculated from Eq. (7). Dashed lines are ob-
tained from Eq. (3) neglecting coupling of structural units.

function. The DPMS given by Eq. (3) yields
T, —Ty /2T T, a/la—1)

1_
T aT

=1, exp |a (7)

For temperatures well above Ty Eq. (7) is practically
identical with the temperature dependence of the relaxa-
tion time obtained from the RWM neglecting coupling of
structural units. This reflects the high degree of disorder
at higher temperatures that prevents structural units
from coupling into ordered regions. For a sufficiently
high cooling rate kinetic freezing of structural units may
occur already within this temperature domain, implying
a glass transition temperature well above the Kauzmann
temperature. However, at sufficiently slow cooling rate
the liquid may remain in equilibrium even at tempera-
tures close to Tx. Then the first term in Eq. (7) becomes
important. The divergence of this term at T=Tj sets
the lower temperature limit for the glass transition.
Thus, within the context of the present model, the tem-
peratures T, and Ty are practically independent for high
cooling rates but with decreasing cooling rate T, ap-
proaches Ty. The temperature dependences of the
characteristic relaxation time are presented in Fig. 1.

Knowledge of both the equilibrium distribution func-
tion for the energies of structural units and the depen-
dence of the activation energy on the occupational densi-
ty of states (DOS) allows calculation of susceptibility
spectra for supercooled liquids according to

x)= [ “dE

(8)

1+(v/vo)’exp(2{ E + EgIn[1+AEf (E)]} /kT)
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FIG. 2. Susceptibility spectra calculated from Eq. (8) for a
stretched Gaussian DPMS. Experimental data for CKN are
taken from [24].

Figure 2 shows a series of spectra obtained for a stretched
Gaussian DOS. The spectra are asymmetric featuring a
broader high frequency tail. Their widths exceed that of
a Debye spectrum considerably. The T dependence of
the peak maximum is in accord with the prediction of Eq.
(7) for the parameter set chosen. Calculated y(v) spectra
are unspecific for the type of molecular motion involved
while experimental spectra can be mode sensitive if only a
subset of motions, such as dipole reorientations, contrib-
ute to an external signal. Nevertheless, experimental
spectra for dielectric loss, mechanical stress relaxation,
and heat capacity hardly differ from each other and are
remarkably similar to spectra calculated via Eq. (8). As
an example the dielectric loss spectrum for
0.4Ca(NO;),-0. 6KNO; (CKN) recorded at 60°C [24] are
included in Fig. 2. These spectra have previously been
fitted on the basis of a heuristically assumed stretched ex-
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ponential relaxation function. The good agreement
demonstrates that the present treatment provides a
framework for interpreting susceptibility spectra on a
more rigorous level.

On the other hand, most experimental susceptibility
spectra become narrower with increasing temperature
(see, e.g., [1]) while calculated spectra reveal the opposite
trend. The latter effect is a consequence of the assump-
tion of a rigid energy landscape. In reality temperature
dependent vibrations lead to fluctuating heights of bar-
riers separating metastable states. This will eventually
lead to motional averaging effects and, ultimately, to the
appearance of Debye-like spectra. Treatment of this
effect within the framework of the RWM concept will be
the subject of future work.

In summary, we have presented an analytic treatment
of cooperative effects in supercooled liquids within the
framework of a random-walk model describing the dy-
namics of structural units in energy space invoking
dipole-dipole coupling. It predicts the existence of
cooperatively rearranging regions that expand as T ap-
proaches a critical temperature Ty, identified as the
Kauzmann temperature at which the configurational en-
tropy vanishes. However, the completely ordered state is
realized at infinitely slow cooling rates only. Otherwise a
kinetic freezing effect intervenes that is responsible for
the occurrence of (i) the calorimetric glass transition
above Ty and (ii) the formation of ordered and disor-
dered regions that persist at T > T,. The proposed model
predicts susceptibility spectra as well as the T depen-
dence of the average relaxation frequency consistent with
experimental data.
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